AD 738025 R.L.VANALLEN R.G.BROWN FEBRUARY 1972 Technical Report ERI-72023 # AN INCREMENTAL VELOCITY MEASUREMENT ALGORITHM FOR USE IN INERTIAL NAVIGATION ALIGNMENT moject Themis Automatic Mavigation and Control CONTRACT NO N000 14-88 A-0162 OFFICE OF NAVAL RESEARCH DEPARTMENT OF THE NAVY WASHINGTON D. C. 20360 NATIONAL TECHNICAL INFORMATION SERVICE This document has been approved for public release and sale; its distribution is unlimited. ERI Project 713-S Ames, Iowa 50010 | מממ | TIME | NT | CONTROL | DATA . | RX | D | |-----|------|----|---------|--------|----|---| |-----|------|----|---------|--------|----|---| Engineering Research Institute Lowa State University Unclassified or tall reseatt to Classific di #1 PO# . . . F AN INCREMENTAL VELOCITY MEASUREMENT ALGORITHM FOR USE IN INTERNAL NAVIGATION ALIGNMENT Letter the alteration of title, solle for the tract and roles and a Technical Report, February 1972 Sur THORIS, (First name, middle initial, last name R. L. VanAllen and R. G. Brown February 1972 N00014-68-A-0162 PROJECT NO 8 - FOR * 54 *E ERI 712-S 99 7 ____ ISU-ERI-AMES-72023 OTHER REPORT NO SI Ans other numbers that may be assigned this report; CISTRIBUTION STATEMENT This document is approved for public release and sale; its distribution is unlimited PPLEMENTARY NOTES Office of Navai Research Department of the Navy Washington, D.C. 20360 In any inertial navigation system the platform must be initially aligned in some known frame of reference prior to operation in the navigation mode. Selfalignment methods are preferred in most applications, and the usual procedure is to align the platform locally level with one accelerometer axis pointing north. In the current generation of aircraft inertial systems the sensed acceleration is in the form of incremental velocity pulses. These are accumulated to yield a measure of total velocity within the granularity of the incremental velocity change. Kalman filtering techniques have recently been applied to the alignment problem, the usual mode of operation samples the total velocity at a fixed rate, and the resulting sequence of samples becomes the input to the Kalman filter. Granularity in the velocity measurement is then treated as uncorrelated measurement noise. This leads to three important changes in the filter model: (1) aperiodic sampling is obtained; (2) measurement noise due to granlarity is eliminated; and (3) a delayed state appears in the measurement equation. This latter condition forces the use of a modified form of the Kalman recursive equations. Results of Monte Carlo simulations for one set of noise parameters are given. These indicate that considerable improvement in performance may be expected from this technique relative to the more conventional mode ing technique. DD FORM 1473 (PAGE 1) Unclassified MANNE CHARLES AND LINE AND CHARLES WITH THE STANDARD CONTRACT OF ST Unclassified Security Classification Navigation Inertial Navigation Kalman filter Inertial alignment LINK A KEY #0#05 LINK C ROLE w T ROLE #T ROLE W T Inertial alignment المناصية والمناصلة والمناص DD FORM 473 (BACK) 111-907-5921 Unclassified **TECHNICAL REPORT** AN INCREMENTAL VELOCITY MEASUREMENT ALGORITHM FOR USE IN INERTIAL NAVIGATION ALIGNMENT R. L. VanAllen R. G. Brown February 1972 Submitted to Office of Naval Research Department of the Naval Themis Contract NOOO14-68-A 0162 Duplication of this report, in week in in part, may be made for any purpose of the United States Government ISU-ERI- AMES-72023 ERI Project 712-S ENGINEERING RESEARCH INSTITUTE IOWA STATE UNIVERSITY AMES merical contraction of the contr ### ABSTRACT satisfies the property of the same eereppenaarahise) taangaseerean termas gunera sentipura persenaari van Ugeseraan Aireer Mindress Mindress oo t In any inertial navigation system the platform must be initially aligned in some known frame of reference prior to operation in the navigation mode. Self-alignment methods are preferred in most applications, and the usual procedure is to align the platform locally level with one accelerometer exis pointing north. In the current generation of aircraft inertial systems the sensed acceleration is in the form of incremental velocity pulses. These are accumulated to yield a measure of total velocity within the granularity of the incremental velocity change. Kalman filtering techniques have recently been applied to the alignment problem, the usual mode of operation samples the total velocity at a fixed rate, and the resulting squence of samples becomes the input to the Kalman filter. Granularity in the velocity measurement is then treated as uncorrelated measurement noise. A new approach to the alignment problem is considered in this report whereby the incremental velocity pulses are modeled directly as the measurement sequence. This leads to three important changes in the filter model: (1) aperiodic sampling is obtained: (2) measurement noise due to granularity is eliminated; and (3) a delayed state appears in the measurement equation. This latter condition forces the use of a modified form of the Kalman recursive equations. Results of Monte Carle simulations for one set of noise parameters are given. These indicate that considerable improvement in performance may be expected from this technique relative to the more conventional modeling technique. # TABLE OF CONTENTS | | | Page | |------|---|------| | ı. | INTRODUCTION | 1 | | II. | KALMAN RECURSIVE EQUATIONS | 3 | | III. | MATHEMATICAL MODELS | 6 | | | A. System Dynamics and Incremental Velocity Measurement Model | 5 | | | B. Incremental Time Measurement Model | 20 | | IV. | DIGITAL SIMULATION | 23 | | | A. Method of Analysis | 23 | | | B. Process and Measurement Simulation | 23 | | | C. Delta Velocity Kalman Estimator | 30 | | | D. Time Interval Kalman Estimator | 34 | | | E. HPHI Subroutine | 34 | | v. | RESULTS | 37 | | VI. | CONCLUSIONS | 48 | | VII. | LITERATURE CITED | 49 | | III. | ACKNOWLEDGEMENTS | 50 | | IX. | APPENDIX A: SIMULATION PROGRAM | 51 | | | A. Main Program | 51 | | | B. DVKAL Subroutine | 58 | | | C. TIKAL Subroutine | 62 | | | D. HPHI Subroutine | 66 | | x. | APPENDIX B: GRAPHICAL RESULTS | 70 | | | A. Azimuth Error | 70 | | | B. Level Tilt | 81 | # I. INTRODUCTION Before an inertial navigation system can be used as a reliable navigation aid, certain quantities must be initialized. These include the vehicle position and velocity and the platform orientation with respect to the navigation coordinate system. Obviously, the accuracy to which these parameters can be determined is a limiting factor in system performance. If the vehicle is stationary, we presumably know its position and velocity essentially perfectly. Thus, these values can be accounted for in a straightforward fashion. To align the platform in any coordinate frame, knowledge must be obtained of three angles, usually those along the axes of the given coordinate system. For simplicity an x-axis north, y-axis west, and z-axis up frame of reference is used throughout this paper. Various leveling and gyrocompassing schemes are well documented [1] and will not be discussed here. Essentially, leveling is performed to align the platform with the east-west and north-south axes while gyrocompassing reduces the azimuth or "north-pointing" error. Traditionally, the azimuth misslignment following an alignment period has been about an order of magnitude greater than the corresponding level error angles. In recent wears, however, the use of Kalman filter theory in estimating the above quantities has improved initial alignment and subsequently increased inertial navigation accuracy capability. If a Kalman filter is used to estimate the platform orientation angles, the estimates can be used in either closed or open loop form. The latter method will be assumed and is illustrated in Figure 1. Figure 1. Open loop estimation In this scheme output from the inertial navigation instrument cluster is processed in the Kalman filter for some predetermined alignment time. At the end of the alignment interval, platform correction information proportional to the misalignment angles is used in the torquer motors to correct any platform misorientation. In this paper a gyrocompassing technique using a new and unique incremental velocity measurement algorithm in a Kalman filter estimation scheme is presented and compared with a system employing a somewhat standard time interval measurement method with simple periodic sampling. # II. KALMAN RECURSIVE EQUATIONS Two sets of Kalman filter equations are utilized. The first includes the "standard" recursive relationships [2] in which the state and measurement models are required to have the format specified below. The system dynamics are assumed to satisfy the first-order differential equation $$\frac{\ddot{x}}{x} = A\underline{x} + D\underline{f} \tag{1}$$ This first-order equation is then assumed to transfer to a discrete state equation of the form $$x_{n+1} = f_n x_n + g_n \tag{2}$$ where x_n is the system state at time t_n , d_n the state transition matrix at time t_n , and g_n an uncorrelated sequence representing the system response to white noise inputs. As in (2), matrix and vector quantities will be implied as the situation dictates. The measurement equation is formulated as $$y_n = M_n x_n + \delta y_n \tag{3}$$ where y_n is the measurement at time t_n , M_n the linear connection watrix relating the various states, and δy_n an uncorrelated sequence of measurement noises (white). With the system modeled by (2) and (3) the recursive Kalman equations are $$b_{n} = P_{n}^{*} M_{n}^{T} (M_{n} P_{n}^{*} M_{n}^{T} + V_{n})^{-1}$$ (4) $$\dot{x}_{n} = \dot{x}_{n}^{t} + \dot{v}_{n}(y_{n} - \dot{y}_{n}^{t}) \tag{5}$$ $$P_{n} = P_{n}^{*} - b_{n} (\mathbf{H}_{n} P_{n}^{*} \mathbf{H}_{n}^{T} + V_{n}) b_{n}^{T}$$ (6) $$\hat{\mathbf{x}}_{n+1}^{i} - \boldsymbol{\phi}_{n}^{A} \tag{7}$$
$$P_{n+1}^{\dagger} = \phi_n P_n \phi_n^T + H_n \tag{8}$$ where $\phi_{n} = \text{transition matrix for interval from } t_{n} \text{ to } t_{n+1}$ $x_n = true state at time t_n$ $x_n = \text{optimum } \underline{a} \text{ } \underline{posteriori} \text{ estimate of } x \text{ at time } t_n$ x_n^{\prime} = optimum <u>a priori</u> estimate of x at time t_n b_n = gain matrix $y_n = measurement at time t_n$ $\dot{y}_n = M_n \dot{x}_n$ $P_n^* = \text{covariance matrix of the estimation error } (x_n^* - x_n^*)$ $P_n = \text{covariance matrix of the estimation error } (x_n - x_n)$ M = measurement matrix $V_n = covariance matrix of the measurement error, i.e.,$ $$V_n = E(\delta y_n \delta y_n^T)$$ \mathbf{H}_n = covariance matrix of the response of the states to all white noise driving functions, i.e., $\mathbf{K}_n = \mathbf{E}(\mathbf{g}_n\mathbf{g}_n^T)$ Lt = time increment between t and t n+1 The other set of recursive equations used involve the use of a modified (delayed-state) measurement model. The measurement equation is $$y_n = M_n x_n + N_n x_{n+1} + \delta y_n \tag{9}$$ That is, the measurement at time t_n consists of a linear connection to states at both t_n and t_{n-1} . As before, the system is described by (2). In this configuration the recursive relationships become [3] $$b_{n} = (P_{n}^{\dagger} M_{r}^{T} + \phi_{n-1} P_{n-1} N_{r}^{T}) Q^{-1}$$ (10) $$\dot{x}_{n} = \dot{x}_{n}^{\dagger} + b_{n}(y_{n} - \dot{y}_{n}^{\dagger}) \tag{11}$$ $$P_{n} = P_{n}^{-} - b_{n} Q b_{n}^{T}$$ (12) $$\dot{x}_{n+1}^{i} = \phi_{n}^{A} \dot{x}_{n} \tag{13}$$ $$P_{n+1}^{\dagger} = \phi_n P_n \phi_n^T + H_n \tag{14}$$ where $$Q = (M_{n}P_{n}^{*}M_{n}^{T} + V_{n}) + N_{n}P_{n-1}N_{n}^{T} + N_{n}P_{n-1}\phi_{n-1}^{T}M_{n}^{T} + M_{n}\phi_{n-1}P_{n-1}N_{n}^{T}$$ (15) and $$\hat{y}_{n}^{i} = M_{n} \hat{x}^{i} + N_{n} \hat{x}_{n-1}^{A}$$ (16) A derivation of the above delayed-state equations in included in the Appendix of $\begin{bmatrix} 4 \end{bmatrix}$. ## III. MATHEMATICAL MODELS # A. System Dynamics and Incremental Velocity Measurement Model The following development of the system dynamics is essentially included in Pitman [1] while the incorporation of the new incremental velocity measurement algorithm is taken largely from unpublished notes by Dr. R. G. Brown of Iowa State University. The basic equations that describe the inertial system error propagation for a stationary vehicle are Equations $$\begin{cases} v_{x} - \Omega_{z} \dot{v}_{y} = \epsilon_{x} \\ \dot{v}_{y} + \Omega_{z} \dot{v}_{x} - \Omega_{x} \dot{v}_{z} = \epsilon_{y} \\ \dot{v}_{z} + \Omega_{x} \dot{v}_{y} = \epsilon_{z} \end{cases}$$ (17) Schuler Dynamics $\begin{cases} \delta \ddot{\theta}_{y} + 2 i_{z} \delta \dot{\theta}_{x} + \omega_{o}^{2} (\delta \theta_{y} + \psi_{y}) = \delta a_{x}/R \\ \vdots \\ \delta \theta_{x} - 2 i_{z} \delta \dot{\theta}_{y} + \omega_{o}^{2} (\delta \theta_{x} + \psi_{x}) = -\delta a_{y}/R \end{cases}$ (20) where R = radius vector from the center of the earth to crue vehicle position ω_0^2 = local gravity vector, g, divided by the earth radius vector, R The above angles are illustrated in Figure? Figure 2. Coordinate system relationships It should be noted that a third Schuler equation involving $\delta\theta_z$ is not included because the vertical error is assumed to be zero. The physical quantities that we desire to estimate in our Kalman filter are the level tilts (ϕ_x and ϕ_y) and azimuth error (ϕ_z). These angles can be inserted into the system equations through the relation • $\underline{\phi} = \underline{\dot{v}} + \underline{\delta \theta}$. The effect of knowing position perfectly is that $\underline{\delta \theta} = 0$. Thus, $\underline{\phi} = \underline{\dot{v}}$ and (17), (18), and (19) become $$\oint_{\mathbf{X}} - \Omega_{\mathbf{z}} \oint_{\mathbf{y}} = \epsilon_{\mathbf{x}} \tag{22}$$ $$\dot{\phi}_z + \Omega_x \dot{\phi}_y = \epsilon_z \tag{24}$$ For the purposes of this study we make several simplifying assumptions. We first assume that some sort of coarse alignment has taken place such that the level tilts are relatively small as compared with azimuth error (statistically, at least). Also we let the gyro drifts and accelerometer biases be zero (i.e., we assume perfect instruments). Then (22), (23), and (24) become $$\dot{\boldsymbol{\delta}}_{\mathbf{x}} \approx 0 \tag{25}$$ $$\dot{\boldsymbol{\delta}}_{\mathbf{y}} - \hat{\boldsymbol{\alpha}}_{\mathbf{x}} \boldsymbol{\delta}_{\mathbf{z}} \approx 0 \tag{26}$$ $$\dot{\boldsymbol{\delta}}_{z} \approx 0 \tag{27}$$ An explicit solution can now be written for ϕ_x , ϕ_y , and ϕ_z . $$\delta_{\mathbf{x}}(t) = \delta_{\mathbf{x}}(0) \tag{28}$$ $$\phi_z(t) = \phi_z(0) \tag{29}$$ $$\phi_{\mathbf{y}}(t) = \int_{0}^{t} \Omega_{\mathbf{x}} \phi_{\mathbf{z}} dt + \phi_{\mathbf{y}}(0)$$ $$= \Omega_{\mathbf{x}} \phi_{\mathbf{z}}(0)t + \phi_{\mathbf{y}}(0) \tag{30}$$ $$\begin{bmatrix} \boldsymbol{\delta}_{x} \\ \boldsymbol{\delta}_{y} \\ \boldsymbol{\delta}_{z} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \Omega_{x} t \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{\delta}_{x}(0) \\ \boldsymbol{\delta}_{y}(0) \\ \boldsymbol{\delta}_{z}(0) \end{bmatrix} + \begin{bmatrix} zero \\ driving \\ function \end{bmatrix}$$ (31) These, then, are the basic state equations. The measurement model must take into account the "real-world" accelerometer mechanization. Basically the accelerometer emits a pulse whenever a predetermined increment in velocity (integrated acceleration) is reached. Physically this can take the form of an integrator at the accelerometer output. The integrator is used in conjunction with a threshold detector that emits a $\pm \&V$ pulse whenever the preset threshold is reached. When the delta velocity pulse is emitted, the appropriate positive or negative &V increment is fed back, ideally resetting the integrator to zero. An example of an integrated acceleration function and the corresponding sequence of &V pulses is shown in Figure 3. Figure 3. Integrated acceleration function Note the nonuniform time interval between pulses. Using the open-loop correction scheme discussed above, we want to estimate the level tilts (ϕ_x, ϕ_y) and the azimuth error (ϕ_z) based on a sequence of ΔV measurements that occur in a finite interval of time. Explicitly the ΔV measurement is (for both accelerometers) and Now $$a_{x} = -g \phi_{y} + (\text{Noise})_{x}$$ (32) $$a_{y} = g \phi_{x} + (\text{Noise})_{y}$$ (33) Using (31), (32), and (33) the problem decouples as foll ws East-West Channel $$\begin{cases} \delta_{x} = \delta_{x}(0) & \text{Process Model} \\ a_{y} = g\delta_{x} + (\text{Noise})_{y} & \text{Measurement} \end{cases}$$ North-South Channel $$\begin{cases} \begin{bmatrix} \delta_{y} \\ \delta_{z} \end{bmatrix} = \begin{bmatrix} 1 & \Omega_{x}t \\ 0 & 1 \end{bmatrix} & \begin{bmatrix} \delta_{y}(0) \\ \delta_{z}(0) \end{bmatrix} & \text{Process Model} \end{cases}$$ $$\begin{cases} a_{x} = -g\delta_{y} + (\text{Noise})_{x} & \text{Measurement} \end{cases}$$ At this point we will develop only the north-south measurement equations as that channel furnishes the information concerning azimuth error. The east-west derivation proceeds in an analagous fashion and will be omitted. The actual measurement is Writing this out explicitly we obtain (from (32)), $$\int_{t_{n-1}}^{t_{n}} a_{x}(t)dt = \int_{t_{n-1}}^{t_{n}} - g\phi_{y}(t)dt + \int_{t_{n-1}}^{t_{n}} noise$$ Substituting for $\phi_{\mathbf{v}}(t)$, $$\int_{t_{n-1}}^{t_{n}} a_{x}(t)dt = -g \int_{t_{n-1}}^{t_{n}} [\Omega_{x} \delta_{z}(0)t + \delta_{y}(0)]dt + \int_{t_{n-1}}^{t_{n}} noise$$ $$= -\frac{1}{28} \Omega_{x} \delta_{z}(0) (t_{n}^{2} - t_{n-1}^{2}) - g \delta_{y}(0) (t_{n} - t_{n-1})$$ $$+ \int_{t_{n-1}}^{t_{n}} ncise$$ (34) Now substituting $$\begin{aligned} \phi_{y}(0) &= \phi_{y}(t) - \Omega_{x} \phi_{z} t \\ &= \phi_{y}(t_{n}) - \Omega_{x} \phi_{z} t_{n} \end{aligned}$$ and $e_z(0) = e_z(t_n)$ into (34) we obtain $$\int_{t_{n-1}}^{t_{n}} a_{x}(t)dt = -\frac{1}{2}g \Omega_{x} \delta_{z}(t_{n}^{2} - t_{n-1}^{2}) - g(\delta_{y}(t_{n}) - \Omega_{x} \delta_{z}t_{n})(t_{n} - t_{n-1})$$ $$+ \int_{t_{n-1}}^{t_{n}} noise$$ (35) ____ Rearranging (35) $$\int_{t_{n-1}}^{t_{n}} a_{x}(t)dt = g \Omega_{x} \delta_{z}(t_{n} - t_{n-1})[t_{n} - \frac{1}{2}(t_{n} + t_{n-1})]$$ $$- g \delta_{y}(t_{n})(t_{n} - t_{n-1}) + \int_{t_{n-1}}^{t_{n}} noise$$ (36) Now let $t_n - t_{n+1} = \Delta t_n$. Then $$\int_{t_{n-1}}^{t_{n}} a_{x}(t)dt = (\frac{1}{2}g \Omega_{x} \Delta t_{n}^{2}) \phi_{z}(t_{n}) + (-g\Delta t_{n}) \phi_{y}(t_{n})$$ $$+ \int_{t_{n-1}}^{t_{n}} noise$$ $$(37)$$ Equation (37) is now in the correct measurement format except for the noise term. To account properly for the integrated noise term in (37), let us assume that the major source of noise is random lateral motion of the vehicle plus white instrument noise. Although lateral motion was ignored in the system process derivation, it is an important noise source due to wind buffeting, loading, and general random motions that occur to the vehicle. In deriving our noise model we will let the vehicle be an aircraft, thus knowing that there is no appreciable net random motion (position) when it is stationary on the ground. At the acceleration level this is a special type of noise; it is such that the double integral of the acceleration noise is bounded, and is thus a stationary process. Therefore, let us assume that at the position level, the process is shaped Markov. Then, so that acceleration and velocity have bounded variance, we postulate the model shown in Figure 4 (position that is Markov shaped by a second-order filter). Note that position, velocity, Figure 4. Noise model and acceleration all have bounded variance with the parameters σ^2 , β , \pm_r , and ζ chosen to fit the physical situation at hand. The second part of the integrated noise
term is the contribution due to instrument noise. This noise is assumed to arise from the basic accelerometer itself (e.g., proof mass jitter due to noise from the servo electronics) and thus appears as integrated acceleration noise at the instrument output. We will assume that the basic acceleration noise is white, thus the accelerometer output is a random walk process as shown in Figure 5. K₁ is chosen to fit the physical situation. The random walk process is described by the first-order differential equation $$n_2(t) = v(t) \tag{38}$$ Integrating, we obtain કે પ્રેમિક પ્રાપ્તિ કરિક્ષ મામ છે. જે માન કરિકાન મામ કર્યા છે. જે જે જે મામ કર્યા છે. જે મામ કર્યા છે. જે જે જ $$n_2(t) = n_2(0) + h(t)$$ (Driven Response) (39) or in difference equation format $$n_{2_{n+1}} = n_{2_n} + h_n \tag{40}$$ where h is found by forming the convolution integral [5] $$h_{n} = \int_{0}^{\Delta t} y(u)v(\Delta t - u)du$$ (41) y(u) is the weighting function of the filter (i.e., the inverse Laplace transform of 1/s). Instrument Noise $$\frac{1}{s}$$ Acceleration Noise $v(t)$ $n_2(t)$ (white noise-amplitude K_1) Figure 5. Instrument noise random process $$y(u) = \sqrt[n]{1/s}$$ $$= 1$$ (42) Then $$\frac{\Delta t}{h_n} = \int_0^{\infty} 1 \cdot \overline{v(\Delta t - u)} du = 0$$ (43) since the white noise input v(t) has zero mean. Also, $$h_{n}^{2} = \int_{0}^{r} \int_{0}^{r} y(u)y(w)v(\Delta t - u)v(\Delta t - u)dudw$$ $$0 \quad 0$$ (44) and $$\frac{1}{h_n^2} = \int_0^\infty y(u)y(u)\overline{y(\Delta t - u)v(\Delta t - w)}dudw$$ $$0 \quad 0 \quad 0 \quad (45)$$ Since v(t) is white noise with amplitude K_1 , $v(t-u)v(t-w) = K_1 \dot{v}(u-w)$, where $\dot{v}(t)$ is the Dirac delta function. Then $$\frac{1}{h_n^2} = \int_0^{\Delta t} \int_0^{\Delta t} 1 \cdot 1 \cdot K_1 \delta(u - w) du dw \qquad (46)$$ Using sifting integral theory, $$\frac{Lt}{h_n^2} = \int_{-\infty}^{\infty} K_1 dw$$ $$= K_1 Lt$$ (47) Thus h_n can be represented by an uncorrelated sequence of Gaussian random variables with zero mean and variance equal to K_1 at. Let us now assign states to the physical quantities to obtain the correct process model format for the Ka mar filter. Let $$x_{\tilde{1}} = b_{\tilde{y}} \tag{48}$$ $$x_2 = b_2 \tag{49}$$ Figure 4 can be redrawn as Figure 6. State formulation of noise model Now let $$x_3 = z(t)$$ (position noise) (50) $$x_4 = z(t)$$ (velocity noise) (11) $$x_5 = \ddot{z}(t)$$ (acceleration noise) (52) The basic differential equation is $$\ddot{z} + (\beta + 2\zeta w_{r})\ddot{z} + (w_{r}^{2} + 2\beta\zeta w_{r})\dot{z} + \beta w_{r}^{2}z = \sqrt{2\sigma^{2}\beta} \cdot w_{r}^{2} \cdot f(t)$$ (53) Then in matrix form we have $$\begin{bmatrix} \cdot \\ x_3 \\ \cdot \\ x_4 \\ \cdot \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\beta w_r^2 & -(w_r^2 + 2\beta \zeta w_r) & -(\beta + 2\zeta w_r) \end{bmatrix} \cdot \begin{bmatrix} x_3 \\ x_4 \\ x_5 \end{bmatrix}$$ $$\begin{array}{c|c} & 0 \\ & \\ \sqrt{2\sigma^2 \beta \cdot \omega_r^2 \cdot f(t)} \end{array}$$ (54) Equation (54) is in the standard state variable form of Equation (1). The state transition matrix can now be found in closed form from $$\phi(t) = Z^{-1}[(sI - A)^{-1}]$$ (55) where I is the identity matrix. Each term of o(t) is of the form $$K_{ij} e^{-\beta \Delta t} + L_{ij} e^{-\zeta w_r \Delta t} \sin (w_r \sqrt{1-\zeta^2} \cdot \Delta t + \theta_{ij})$$ (56) where K_{ij} , L_{ij} , and θ_{ij} are functions of ψ_r , f, f, and g^2 . The driven responses for the states (g_n) can be found in closed form by again forming the convolution integral $$x_{i}(t) = \int_{0}^{t} y_{i}(u)f(t-u)du$$ (57) where $y_i(u)$ is the weighting function between f(t) and the state of interest, x_i . Then $$\overline{x_{i}(t)} = y_{i}(u)\overline{f(t-u)}du = 0$$ (58) and $$\frac{1}{x_{i}^{2}(t)} = \int_{0}^{t} \int_{0}^{t} y_{i}(u)y_{i}(v) \overline{f(t-v)} dudv \qquad (59)$$ as before. $x_i^2(t)$ again indicates taking the expected value. Since f(t) is unity variance white noise, $\overline{f(t-u)f(t-v)}$ is just $\delta(u-v)$. Equation (59) then becomes $$\frac{1}{x_{i}^{2}(t)} = \int_{0}^{t} y_{i}(u)y_{i}(v)\delta(u-v)dudv$$ (60) $$= \int_{0}^{t} y_{i}^{2}(v) dv$$ (61) Thus the driven response for each state, x_i , is a random variable with t zero mean and variance equal to $\int_{0}^{x} y_i^2(v) dv$, where we let $t = \Delta t$. Recapping, then, $$\begin{bmatrix} x_{3} \\ x_{4} \\ x_{5} \\ n+1 \end{bmatrix} = \begin{bmatrix} \phi_{n}(3,3) & & & \\ \phi_{n}(5,5) & & \\ \phi_{n}(5,5) & & \\ \text{(Transition Matrix)} & & & \\ x_{4} \\ x_{5} \\ n \end{bmatrix} + \begin{bmatrix} g_{3} \\ n \\ s_{4} \\ n \\ s_{5} \\ n \end{bmatrix}$$ The last state to be considered is described by (40). Here we let $n_2 = x_6$ and $h_n = g_6$. Then $$x_{6_{n+1}} = x_{6_n} + g_{6_n}$$ (62) Finally, combining all six states in matrix form, The process model is now in the correct format. Returning to the measurement equation, (37), we now write $$y(t_n) = \int_{t_{n-1}}^{t_n} a_x dt = (-g\Delta t_n)x_1(t_n) + (\frac{1}{2}g \hat{x}_x \Delta t_n^2)x_2(t_n)$$ $$+ \int_{t_{n-1}}^{t_n} (Accelerometer Noise)dt$$ But the integral of accelerometer noise is just $x_4 + x_6$, thus, $$y(t_{n}) = (-g\Delta t_{n})x_{1}(t_{n}) + (\frac{1}{2}g\Omega_{x}\Delta t_{n}^{2})x_{2}(t_{n})$$ $$+ x_{4}(t_{n}) - x_{4}(t_{n-1}) + x_{6}(t_{n}) - x_{6}(t_{n-1})$$ (64) Note the delayed states in the measurement equation and the absence of the "standard" measurement white noise. It should be noted from (62), however, that $\mathbf{x}_6(\mathbf{t}_n) - \mathbf{x}_6(\mathbf{t}_{n-1})$ is just $\mathbf{g}_6(\mathbf{t}_{n-1})$ or an uncorrelated sequence of Gaussian random numbers with zero mean and variance given by (47). Thus this quantity could be accounted for in the measurement equation by denoting it as by (measurement noise). Then (64) becomes $$y(t_n) = (-g\Delta t_n)x_1(t_n) + (\frac{1}{2}g \Omega_x \Delta t_n^2)x_2(t_n) + x_4(t_n) - x_4(t_{n-1}) + 5y(t_n)$$ (65) Including state six as a noise contribution in the measurement equation contains a significant advantage when implementing a recursive routine as this technique reduces the dimensionality of the problem by reducing the order of the state process. However, (64) will be considered the measurement equation for purposes of this paper because, as will be shown later, the incremental time measurement noise cannot be handled as in (65) above. The model is now complete for use in the delayed-state Kalman recursive equations, i.e., $$y_{n} = [-g\Delta t_{n} \quad \frac{1}{2}g \Omega_{x} \Delta t_{n}^{2} \quad 0 \quad 1 \quad 0 \quad 1] \quad x_{n}$$ $$+ [0 \quad 0 \quad 0 \quad -1 \quad 0 \quad -1] \quad x_{n-1}$$ (66) Also note that each measurement y_n is either a positive or negative delta velocity quantum and that the measurement time interval, Δt_n , is non-uniform and varies as the process evolves. # B. Incremental Time Measurement Model As seen in the previous section the incremental velocity algorithm involves delayed states and nonstandard time intervals. Schemes used for Kalman filter gyrocompassing in previous studies have employed other measurement models, usually involving a uniform time interval. One such model is described in some detail in [6]. In this model the output pulses from the accelerometer are stored in a digital pulse count register. The register is then sampled at some uniform rate to furnish the Kalman filter measurement. The pulse count in the register, then, is a measure of the total velocity (integrated acceleration) and not the incremental change. The measurement equation is $$y(t_n) = \int_{y}^{2} -g \phi dt + (Integrated Acceleration Noise) + n_m$$ (67) The first term is handled as in the previous section except that the time interval between measurements, Δt , is replaced by the total elapsed time t. The second quantity in (67) is just $x_4(t_n) + x_6(t_n)$ as derived in Section A. Notice that the instrument noise, x_6 , must be handled as a state since it is a random walk process and not a sequence of uncorrelated random numbers. The n term represents the quantization error at each sampling of the accelerometer pulse count register. Figure 7 illustrates the measurement procedure for a typical member function. The registers are sampled at uniform Δt intervals and it can be seen that the measurement may be in error by as much as $\pm \Delta V$. Although this measurement noise is not normally distributed with zero mean, and is, in fact, uniformly distributed, the quantization error is assumed Figure 7. Time interval measurement MANAGEMENT OF THE PROPERTY to be normally distributed [6]. Thus n_{in} is assumed to be zero mean Gaussian white noise with variance $(\Delta V)^2$. Letting $n_{in} = \delta y_{in}$ we now write (67) as $$y(t_n) = [-gt \frac{1}{2}g \Omega_x^2]^2 = 0 = 1 = 0 = 1] x(t_n) + \delta y_n$$ (68) Equation (68) is now in the required format for the standard recursive Kalman equations. by $_{\rm n}$ is the measurement noise with variance $(\Delta V)^2$. # IV. DIGITAL SIMULATION # A. Method of Analysis Evaluation of the new incremental velocity algorithm using any sort of analytic technique is, at best, very difficult. For this reason, comparison with a more or less "standard" estimation technique was chosen as the best means for evaluating system performance. The approach taken was to simulate the physical random process and use both estimation techniques simultaneously. At the end of some predetermined alignment time the ability of the estimators to determine the actual value of the azimuth error and level tilt was compared. Ten Monte Carlo simulations were performed to establish some measure of statistical validity. The actual computer program sed for the simulation is included in Appendix A while a flow chart illustrating program organization and the various functional blocks is shown in Figure 8. The program itself consists of four sections,
those being the main program and three subroutines. The main program simulates the physical system and the delta velocity and time interval measurements while the subroutines handle the Kalman estimation and the computation of the state transition and H matrices in closed form (the H matrix is the covariance matrix of the state response due to the white noise inputs). # B. Process and Measurement Simulation The system is modeled by the difference equation described by (2) and uses a delta time interval of one millisecond (Table 1). It should Figure 8. Computer flowchart be noted from Appendix A that \mathbf{x}_{1} is not computed in a standard iterative manner from $$x_{1_{n+1}} = x_{1_n} + \Omega_x \Delta t \cdot x_{2_n}$$ (69) The second term in (69) is very small (typically 2×10^{-6}) and when x_1 becomes large the technique is inaccurate due to round-off errors. This problem could be handled by using double precision techniques or by computing the second term at each iteration and adding it to the fixed initial $x_1(0)$. The latter approach is utilized in Appendix A. For purposes of the simulation we assume that the accelerometer instrument noise, x_6 , is zero, i.e., again we assume perfect instruments. Thus only five states are simulated in the program. The state transition matrix is computed from $e^{-1}[(sI - A)^{-1}]$ as explained in Section III. Noise parameters chosen to fit the physical situation are included in Table 1. Table 1. Noise parameters | Parameter | Va lue | | |----------------|-------------------------------|--| | σ ² | 9.0 inches ² | | | β | 0.1 sec ⁻¹ | | | ζ | 0.5 | | | w _r | 0.1 cps = 0.2% radians/second | | | Δt | 0.001 second | | | latitude | 40° N | | The selected parameters represent a vehicle placed in a reasonably benign environment. An example of this situation might be a large flexible aircraft sitting on a ramp with moderate wind, loading, etc. causing some random motion. The At increment is chosen so that the process looks essentially continuous with respect to the system dynamics. Closed form equations for the state transition matrix using the above parameters are given in the main program and HPHI subroutine and are included in Appendix A. Since we performed Monte Carlo simulation, random initial conditions were supplied to the process for each run. Uncorrelated unity variance random numbers with Gaussian distribution were available on magnetic tape and were transformed via the Schmidt orthogonalization procedure [7] into initial conditions with the desired variances and covariances. In order to accomplish this, let z_1 , z_2 , z_3 , z_4 , and z_5 be uncorrelated, unity variance, zero rean Gaussian random variables. States x_1 and x_2 are decoupled from the other states and are assumed uncorrelated. Their assumed variances are $(1 \min)^2$ and $(60 \min)^2$ respectively, thus we let $$x_1(0) = z_1$$ and $$x_2(0) = 60 z_2 \tag{70}$$ States x_3 , x_4 , and x_5 are not uncorrelated. Thus these initial conditions must reflect the appropriate cross-correlation. Let $$\begin{bmatrix} x_{3}(0) \\ x_{4}(0) \\ x_{5}(0) \end{bmatrix} = \underline{c} \cdot \begin{bmatrix} z_{3} \\ z_{4} \\ z_{5} \end{bmatrix} = \begin{bmatrix} a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3} \end{bmatrix} \cdot \begin{bmatrix} z_{3} \\ z_{4} \\ z_{5} \end{bmatrix}$$ (71) with a2, a3, and b3 set equal to zero. Then $$x_3(0) = a_1 x_3$$ and $$\overline{x_3^2(0)} = \overline{a_1^2 z_1^2} = a_1^2 \tag{72}$$ This, then, specifies a₁. In a similar manner $$\overline{x_3(0)x_4(0)} = \overline{a_1b_1z_3^2} + \overline{a_1b_2z_3^2}_4 = a_1b_1$$ (73) as z_3 and z_4 are uncorrelated and z_3 has unity variance. Since a_1 is specified by (72), b_1 can now be found. The remaining members of C may be obtained in a similar fashion. $$C = \begin{bmatrix} 2.97 & 0 & 0 \\ 0 & .69 & 0 \\ -.161 & 0 & .438 \end{bmatrix}$$ (74) Although the terms in the g_n column vector were derived in Section III, the use of some small time interval approximations simplify the computational effort (the derivations in Section III will be useful later in computing the H matrix). If the system is described by (1), then, integrating x yields $$\Delta t \qquad \Delta t \qquad \Delta t$$ $$\int x dt = \int A(t)x(t)dt + \int Df(t)dt \qquad (75)$$ $$0 \qquad 0 \qquad 0$$ For small At, $$\int_{0}^{\infty} A(t)x(t)dt \approx A(t)x(0)\Delta t$$ (76) In addition, D is independent of t, so (75) becomes $$x(\Delta t) - x(0) \approx A(t)x(0)\Delta t + D \int_{0}^{\infty} f(t)dt$$ (77) or $$x(\Delta t) \approx (I + A\Delta t)x(0) + Du(\Delta t)$$ (78) where $$u(\Delta t) = \int_{0}^{\infty} f(t)dt$$ In difference equation format $$x_{n+1} \approx (I + A\Delta t)x_n + Du_n$$ (79) To simulate \mathbf{u}_{n} we take $$\frac{1}{u^{2}(\Delta t)} = \int_{0}^{\Delta t} \int_{0}^{\Delta t} f(u)f(v)dudv$$ (80) or $$\frac{1}{u^{2}(Lt)} = \int_{0}^{\Delta t} \delta(u-v)dudv$$ (81) since f(t) is unity white noise. Evaluating the integral as before $$\frac{1}{u^2(\Delta t)} = \Delta t \tag{82}$$ Thus u_n is simulated as an uncorrelated sequence of normally distributed random numbers with Δt variance. Comparing (79) with the difference equation format, (2), we see that $$g_{n} = Du_{n} \tag{83}$$ where $$D = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \sqrt{2\sigma^2 \beta} \cdot \omega_r^2 \end{bmatrix}$$ (84) D appears here as a single column vector with five entries since, as previously stated, we ignore the accelerometer instrument noise. As noted in the flowchart there is a difference between the true value of vehicle velocity and the accelerometer register output. The accelerometer only starts integrating acceleration at the instrument is engaged, i.e., at t=0. No knowledge of acceleration prior to t=0 is available, thus the accelerometer does not have a measure of the true velocity initially. The "residual initial condition" term appears because it is realistic to assume that the accelerometer integrator is not zeroed perfectly at time t=0, i.e., some initial random voltage within the ΔV granularity is present on the integrator output. The --- HALLING COMPENSOR WHEREING WEST SANDERS OF S relation between these quantities for a typical velocity function is illustrated in Figure 9. The AV quantization used for the simulation is taken to be the same as in [6] and is listed in Table 2. # C. Delta Velocity Kalman Estimator The subroutine DVKAL is used to implement the incremental velocity Kalman estimator. The recursive equations used are slightly modified from those given in (10) through (16). The relationships are $$\hat{x}_{n}^{i} = \phi_{n-1}^{A} \hat{x}_{n-1} \tag{85}$$ $$P_{n}^{*} = \phi_{n-1} P_{n-1} \phi_{n-1}^{T} + H_{n-1}$$ (86) $$b_{n} = (P_{n}^{*}M_{n}^{T} + \phi_{n-1}P_{n-1}N_{n}^{T})Q^{-1}$$ (87) $$\dot{x}_{n} = \dot{x}_{n}^{1} + b_{n}(y_{n} - \dot{y}_{n}^{1}) \tag{88}$$ $$P_{n} = P_{n}^{\star} - b_{n}Qb_{n}^{T} \tag{89}$$ with the quantities as previously defined. Modification is required because the "step-shead" feature of the Kalman filter is not possible, as the time increment between measurements is not known until the actual measurement is made. Thus, it is not until time t_n that we have access to the value $t_n - t_{n-1}$. The a priori estimates of x_n and P_n are obtained at t_n by evolving the optimum estimates at t_{n-1} through (85) and (86). Figure 9. True velocity and accelerometer output Certain initial quantities are needed to begin the recursive routine. As seen from (85) and (86), initial values of x_{n-1}^A and p_{n-1}^A as well as values for p_{n-1}^A and p_{n-1}^A must be obtained. Since the means of all the states of p_n^A are zero, p_n^A = 0 is chosen as the initial best estimate of the states at t=0. The values for the elements of the initial error covariance matrix are chosen to be the steady-state variances and covariances relating the various states. We assume that the initial "coarse" alignment period has reduced the level tilt p_n^A to a value Table 2. Quantities used in the simulation | | | DVKAL | | | | | | | | |---|-------|-------|-------------|-----------------------|-------|--|--|--|--| | | | | | | | | | | | | P _{n-l} (Initial) ≃ | ſι | 0 | 0 | 0 | 0] | | | | | | | 0 | 3600 | 0 | 0 | 0 | | | | | | P _{n-1} (Initial) = | 0 | 0 | 8.808 | 0 | 47741 | | | | | | | 0 | 0 | 0 | .47741 | 0 | | | | | | | Lo | 0 | 47741 | 0 | .2184 | | | | | | $P_{n-1}(1,1)$ in (winutes of arc) ² | | | | | | | | | | | $P_{n-1}(2,2)$ in (minutes of arc) ² | | | | | | | | | | | $P_{n-1}(3,3)$ in (inches) ² | | | | | | | | | | | $P_{n-1}(4,4)$ in (inches/second) ² | | | | | | | | | | | | P | (5,5) |) in (inche | s/second ² |)2 | | | | | | $v_n = E(\partial y_n \partial y_n^T) = (.1\Delta)$ | | | | | | | | | | | $M_{n} = (-g\Delta t_{n})^{\frac{1}{2}}g \Omega_{x} \Delta t_{n}^{2}$ | 0 | 1 (|)) | | | | | | | | $N_n = (0 0 0 -1)$ | 0) | | | | | | | | | | $x_{n-1} = 0$ | | | | | | | | | | | LV = 1 cm/sec = (1/2.5) | 54) i | n/sec | | | | | | | | # TIKAL $$P_n^{\star}$$ (Initial) = Same as P_{n+1} above $V_n = (\Delta V)^2 = (1/2.54)^2 \text{ in}^2/\text{sec}^2$ $M_n = (-\text{gt} \quad \frac{1}{2}\text{g} \, \Omega_x t^2 \quad 0 \quad 1 \quad 0)$ At = 1 second having a standard deviation of one minute of arc while the azimuth error (x2) is assumed to have a standard deviation of sixty minutes of arc. Although we assume zero initial cross-correlation between x, and \mathbf{x}_{2} , we must take cross-correlations of the noise states into account as the white noise driving function distributes itself into these states as the process evolves. Values for these steady-state noise variances and covariances may be obtained by choosing some arbitrary P_{n-1} matrix and letting (86) evolve until the values converge. Note, however, that as time approaches infinity
\oint_{n-1} approaches zero, thus $P_n^*(t \to \infty)$ is equal to $H_n(t \to \infty)$. These values are readily computed via the HPHI subroutine (discussed in E below) and are given in Table 2. The H_{n-1} and ϕ_{n-1} matrices are obtained from the HPHI subroutine each time the equations are used. Other quantities needed for the estimation are V_p , M_n , and N_n and are included in Table 2. As noted in the table, $V_{\rm p}$ is not zero as was assumed in Section III. The desire to insure a "safe" measurement model for the simulation led to the addition of a small amount of measurement noise. If the measurement noise is zero we see from (15) that as P_{n+1} decreases, Q becomes very small. Since x_1 and x_2 are deterministic, these elements of P_{n+1} eventually approach zero making the value of Q subject to computer round-off error. Q can in fact become negative, causing the Kalman estimation to diverge. In addition to the divergence problem, almost any physical situation has some small amount of random noise present at the measurement. The addition of the measurement noise thus makes the measurement model "safer" in a physical sense. The magnitude of the nois≥ is assumed West William and any and known and and to be 10% of the incremental gramularity. Since we assume that the accelerometer integrator is not perfectly zeroed at t=0, the first ΔV measurement must be ignored as the Δt time interval at the time of the measurement does not correspond to a true velocity increment. ## D. Time Interval Kalman Estimator The TIKAL subroutine is included in Appendix A and implements (4) through (8) to estimate the various states. The accelerometer pulse count register is assumed to be sampled every second [6], (i.e., $\Delta t = 1$ second), thus H_n and ϕ_n are constant matrices with values obtained from the HPHI subroutine. The initial a priori estimate of x_n is chosen to be zero while the initial error covariance matrix, P, is obtained as in Part C above. These and other quantities used in the estimation are given in Table 2. # E. HPHI Subroutine The HPHI subroutine computes the state transition (PHI) and driven response covariance (H) matrices in closed form, given a specified time increment. As previously stated, PHI is obtained from the inverse Laplace transform of $(sI - A)^{-1}$ and in general form is $$\delta(\Delta t) = \begin{bmatrix} 1 & \Omega_{x} \Delta t & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & \delta_{33}(\Delta t) & 0 \\ 0 & 0 & 1 & \text{through} \\ 0 & 0 & 0 & \delta_{55}(\Delta t) \end{bmatrix}$$ (90) As noted in Section III $\theta_{33}(\Delta t)$ through $\theta_{55}(\Delta t)$ are of the form (56) where K_{ij} , L_{ij} , and θ_{ij} have been previously computed and are functions of ζ , β , ω_r , and σ^2 . The H_n matrix is defined as $E(g_n \ g_n^T)$, the covariance matrix of the state response due to the white noise input. The first two states are completely decoupled from the white noise input, thus the corresponding elements in the H matrix are zero. The variances and covariances relating the final three states are obtained by forming convolution integrals in the manner of (57) through (61). In general, $$\frac{g_{\mathbf{i}}g_{\mathbf{j}}}{g_{\mathbf{i}}g_{\mathbf{j}}} = \frac{\lambda_{\mathbf{i}} \Delta_{\mathbf{i}}}{x_{\mathbf{j}}} = \int_{0}^{\Delta_{\mathbf{i}}} y_{\mathbf{i}}(u)y_{\mathbf{j}}(v)\delta(u-v)dudv \qquad (91)$$ $$\Delta_{\mathbf{i}}du$$ $$\Delta_{\mathbf{$$ where $y_i(u)$ is the weighting function relating f(t) and x_i . The various weighting functions are obtained from Figure 6 with (92) having the general form $$\begin{split} \overline{g_{i}g_{j}} &= 2\sigma^{2}\beta\omega_{r}^{4} \left[K_{ij} e^{-2\beta\Delta t} \right. \\ &+ L_{ij} e^{-(\beta+\zeta\omega_{r})\Delta t} \left[\frac{-(\beta+\zeta\omega_{r}) \sin(ib\Delta t + \theta_{i}) - \omega_{r} \sqrt{1-\zeta^{2}} \cos(ib\Delta t + \theta_{i})}{c}\right] \\ &+ M_{ij} e^{-(\beta+\zeta\omega_{r})\Delta t} \left[\frac{-(\beta+\zeta\omega_{r}) \sin(ib\Delta t + \theta_{j}) - \omega_{r} \sqrt{1-\zeta^{2}} \cos(ib\Delta t + \theta_{j})}{c}\right] \end{split}$$ $$+ N_{ij} \cos (\theta_{i} - \theta_{j}) e^{-2\zeta w_{r} \Delta t}$$ $$+ P_{ij} e^{-2\zeta w_{r} \Delta t} \left[\frac{-2\zeta w_{r} \cos (2D\Delta t + \theta_{i} + \theta_{j}) + 2w_{r} \sqrt{1 - \zeta^{2}} \sin (2D\Delta t + \theta_{i} + \theta_{j})}{4w_{r}^{2}} \right] \int_{0}^{\Delta t} (93)$$ where $$c = \beta^2 + 2\zeta w_r \beta + w_r^2$$ and $$D = \omega_r \sqrt{1-\zeta^2}$$ The constants K $_{ij}$, and $_{j}$ are again precomputed and are functions of ζ , β , ω , and σ^2 . #### V. RESULTS The performance of the incremental velocity Kalman estimator (DVKAL) was evaluated by comparison with the "standard" time interval (TIKAL) system. The results of the ten Monte Carlo simulations are shown graphically in Appendix B. The DVKAL and TIKAL estimates as well as the true values of states one and two, are plotted versus time in these graphs. In addition to the state estimates, of course, the Kalman filter also computes the error covariance matrix. These error covariance terms for level tilt and azimuth error are averaged over the ten runs and plotted with the actual squared error in Figures 10 through 13. Two factors must be considered when evaluating system performance, these being the accuracy of state estimation and the speed at which this accuracy is attained. Examining the azimuth error estimation curves in Appendix B, we see that in every case the incremental velocity (DWKAL) estimator is superior or equal in both accuracy attained and speed of response. Transients that appear in the individual runs are due to system dynamics. The estimates and truz values for the azimuth error at the end of the alignment period (300 seconds) as well as the RMS estimate errors are given in Table 3. If we define the acceptable "criterion-of-goodness" as estimating the azimuth error to within five winutes of arc, we see that adequate performance is attained on only three of the TIKAL runs. This also is illustrated by the RMS error term which is greater than the required bound. In comparing the response times, we observe from Figures 12 and 13 that the average square of the DWKAL azimuth estimation error is within the desired bound (25 min²) after approximately 200 seconds િલ કાર્યક્રમાં મારે કાર્યક્રમાં કાર્યક્રમાં મારે કાર્યક્રમાં મારે મારે કાર્યક્રમાં કાર્યક્રમા મારે કાર્યક્રમાં કાર્ Figure 10, TIKAL level tilt covariance and error squared Figure 11. DVKAL level tilt covariance and error squared Salakonda San variati viere 在中国人工工程,这样这么多数,他们有这种用的工程,也是一种,我们们是一个人,我们们是一个人,我们们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人, A THE STANTAGE OF Figure 13. DVKAL azimuth error covariance and error squared THE PARTY OF THE PARTY OF THE PROPERTY OF THE PARTY TH Table 3. Azimuth error (minutes of arc) after 300 seconds | Run | True Value | DVKAL Estimate | TIKAL Estimate | |-----|------------|----------------|----------------| | 1 | 47.208 | 45.239 | 57.320 | | 2 | 89.544 | 87.214 | 91.554 | | 3 | -5.046 | -5,262 | -8.219 | | 4 | 33.240 | 32.650 | 39.217 | | 5 | -47.490 | -47.280 | -54.528 | | 6 | -81.720 | -82.121 | -83.994 | | 7 | 13.332 | 12.240 | 4.174 | | 8 | 42.780 | 40.228 | 33.007 | | 9 | 58.116 | 54.924 | 64.869 | | 10 | -106.248 | -104.198 | -112.373 | | | RMS Error | 1.789 | 6.856 | while the TIKAL error never reaches an acceptable level. Results for the level tilts are similar except that the estimate is obtained more rapidly. The reason for this is that the only measure that the Kalman filter has of azimuch error is its connection to the slope of the level tilt. Thus we expect that the filter must first estimate the tilt correctly before it is able to accurately estimate the azimuth error (which is constant). The above results are not surprising as the TIKAL measurement algorithm, in effect, models the physical situation incorrectly. The signal physically available to the TIKAL estimator is a measure of the total integrated acceleration from the accelerameter (Figure 8) and is dependent upon $x_4(t)$ and $x_4(0)$. Since the estimator has no a priori knowledge of x_4 , its best estimate of $x_4(0)$ is zero. Thus we suspect that as $x_4(0)$ becomes larger the performance suffers accordingly. The DVKAL scheme is not affected by this problem as it uses an incremental measurement and estimates the necessary present and delayed states. Another source of error is the "residual initial condition" which is the random initial voltage on the accelerometer integrator. We see from Figure 9 that the resulting integrated acceleration function is not zero initially as is assumed in the TIKAL estimator. Since the DVKAL technique ignores the first ΔV measurement, errors due to this residual quantity are also avoided. The random values used for $x_4(0)$ and the "residual initial condition" as well as the final squared difference between the azimuth error true and estimated values are listed in Table 4. The actual numbers listed for $x_4(0)$ and the "residual initial condition" are unity variance random numbers with the necessary additional scaling shown at the top of the table (the "residual initial condition" does not have a truly normal distribution as it is not allowed to exceed the granularity ΔV). As seen from Table 4 there is a strong correlation between large final errors in the TIKAL estimation and high initial values of x_4 , thus verifying our previous suspicions. This effect is illustrated by taking simulation Run 1 (which had a large value for $x_4(0)$) and setting $x_4(0) = 0$. The result is shown in Figure 14. By comparing Figure 14 with the corresponding graph in Appendix B, the dramatic improvement in performance man parampan man panggan dan panggan dan panggan panggan manggan panggan panggan panggan panggan panggan pangga Figure 14. Run 1 with
$x_4(0) = 0$ Table 4. Final x₂ simulation errors (minutes²) and selected initial conditions A THE TANKS OF THE PARTY | Run | DVKAL Error Squared | TIKAL
Error Squared | * ₄ (0)
(*0.69) | Residual Initial
Condition (× ΔV) | |-----|---------------------|------------------------|-------------------------------|--------------------------------------| | 1 | 3.876 | 102.243 | -1.215 | -0.384 | | 2 | 5,429 | 4.039 | -0.016 | 0.490 | | 3 | 0.047 | 10.067 | -0.153 | -0.735 | | 4 | 0.348 | 35.730 | -0.644 | 0.988 | | 5 | 0.044 | 49.533 | 0.827 | -0.064 | | 6 | 0.161 | 5.173 | 0.343 | 0.042 | | 7 | 1.192 | 83.860 | 0.894 | -0.195 | | 8 | 6.511 | 95.516 | 1.317 | 0.707 | | 9 | 10.137 | 45.603 | -0.191 | 0.969 | | 10 | 4,202 | 37.513 | 0.312 | -0.682 | is evident. Note that the DVKAL performance is essentially unchanged thus supporting our earlier allegation that the DVKAL estimator is primarily independent of $\mathbf{x}_4(0)$. Similar results are observed by setting the "residual initial condition" equal to zero in runs which originally had large values for that quantity. A possible source of error in the DVRAL estimator arises due to the measurement noise which is added to the routine to insure a "safe" measurement model. It is possible for this added noise to slow the rate at which the covariance terms decrease and thus increase the uncertainty Wild Kill of the Caracha Contraction is a straight and a straight and the Caracha Contraction of C associated with the state estimates. In (15, and (10), the added noise decreases the gain, b_n , thereby weighting the measurement term less. Improvement in DVKAL performance for Run 9 is illustrated in Figure 15 by setting the measurement noise equal to zero. The DVKAL response with noise equal to 10% of ΔV is included for comparison. Thus, at least for one run, improved performance does result from decreased measurement noise. This means that a smaller value of measurement noise should have been chosen for the simulation. A study was not conducted to determine optimum magnitudes for this noise and the value selected was done so on a purely heuristic basis. From Figures 12 and 13 it is observed that the TIKAL covariance quantities approach zero faster than the corresponding DVKAL values. This is primarily due to the aforementioned DVKAL measurement noise and (for the process selected, at least) a larger number of TIKAL measurements. THE STANDANT CONTROL OF THE STANDARD STANDARD AND STANDAR Figure 15. Run 9 with zero measurement noise Akundasir de damunda unter etuan dan parak yapan perinten kalanta dan alkalansa kalandan perinten dan beraman ## VI. CONCLUSIONS Under the conditions and limitations assumed (e.g., zero accelerometer biases), the incremental velocity (DVKAL) measurement algorithm is superior to the time interval (TIKAL) sampling scheme in both accuracy of estimation and speed of response. Although the results presented have been obtained using a single physical process, the positive nature of these results indicates the need for a more extensive study to further establish the performance level and limitations associated with the incremental velocity technique. The errors incurred by the time interval algorithm are derived primarily from its improper modeling of the physical situation. ## VII. LITERATURE CITED - [1] G. R. Pitman Jr., Ed., <u>Inertial Guidance</u>. New York: Wiley, 1962. - [2] R. G. Brown, "Kalman filter notes," Dept. Elec. Engr., Iowa State University, June 1968. - [3] R. G. Brown and G. L. Hartman, "Kalman filter with delayed states as observables," Proc. National Electronics Conf., July 1968. - [4] T. B. Cline, "Suboptimization of a Kalman filter with delayed states as observables," M.S. Thesis, Library, Iowa State University, 1970. - [5] R. G. Brown and J. W. Nilsson, <u>Introduction to Linear Systems</u> <u>Analysis</u>. New York: Wiley, 1962. - [6] L. D. Brock and G. T. Schmidt, "Statistical estimation in inertial navigation systems," <u>Journal of Spacecraft and Rockets</u>, vol. 5, no. 2, February 1968, pp. 150-153. - H. W. Sorenson, "Kalman filtering techniques," in Advances in Control Systems, vol. 3, C. T. Leondes, Ed. New York: Academic, 1966, pp. 219-292. # VIII. ACKNOWLEDGMENTS The author is indebted to Dr. R. G. Brown for suggesting the copic for this study and for the guidance given during its investigation. This work was supported by the Engineering Research Institute through funds provided by the Office of Naval Research, contract number NO0014-68A-0162. IX. APPENDIX A: SIMULATION PROGRAM A. Main Program ``` HPHI-CALCULATION OF PHI AND H MATRICES IN CLOSED FORM PHI(5,51,0(5),U(1001),X(5),XT(5),R/300./,LAT,XHV(5),XHT(5) W-FREDUENCY. 1 CM (DEL. IS GIVEN IN INCHES THAT WILL TRIGGER A DELTA VELOCITY MEASUREMENT THAT WILL TRIGGER A DELTA VELOCITY MEASUREMENT PROCESS IS CALCULATED ACCORDING TO X(N+1) =PHI*X(N)+D*U(N), TIME STEP=*001 SEC OTHER PARAMETERS ARE EXPLAINED AS THEY ARE INTRODUCED B-TIME CONSTANT, SIG2-VARIANCE OF PUSITION NOISF IN INCHES SQUARED DVKAL-DELTA VELOCITY KALMAN ESTIMATOR KALMAN ESTIMATOR E-DAMPING RATIO, TIKAL-TIME INCREMENT X(5)=ACCELERATION DUE TO NOISE GREDRCE OF GRAVITY IN INCHES/SEC2 DELV# DELTA VELOCITY INCREMENT X(3) = POSITION DUE TO NOISE X(4) = VELOCITY DUE TO NOISE , PV(5,5), PT(5,5), ERR2(5) X(2)=A2IMUTH ERROR SIMULATION RUN NUMBER DELTA T TIME INTERVAL NOISE PARAMETERS: X(1)=N/S TILT 6=32.1725*12. DVU-JUPPER VALUE DVU-DELV DVL=LOWER VALUE DELV#1./2.54 DO 6 [*1,4 DVL =-DELV SUBROUTINES: INTEGER S=+ 9995 0(1)0 INCLEO T. 001 IND2#0 のまだつと TR#0. ç O ပ O U ပ ``` ``` .,5x, x(5) * ACCELERATION DUE TO NOISE IN INCHES/SEC**2". IN INCHES. *,5%,*%(2)=AZIMUTH ERROR IN MINUTES OF ARC*/ * *,5%,*%(3)=POSITION MOVEMENT DUE TO NOISE IN INCHES * *,5%,*%(4)=VELOCITY DUE TO NOISE IN INCHES/SECOND*/ PHI(3+3)=1-154546X5(-841)+-197546XP(-64X41)+SIN(C-88986) ARC. / FORMAT (* *,5%, *X(1)=NORTH/SOUTH TILT IN MINUTES OF RESIC# RESIDUAL INITIAL CONDITION ON INTEGRATOR ELEMENT OF FORCING FUNCTION COLUMN VECTOR D(5) # (2.451G2 + 8) + 4.5 + W + +2 + T + 4.5 LATITUDE CHANGED FROM DEGREES TO RADIANS STATE TRANSITION MATRIX ELEMENTS OF STATE TRANSITION MATRIX EARTH RATE CHANGED TO RAD/SEC OM# (15. *PI)/(60. *60. *180. FORMAT(* *,F10.2,F10.4) RESIC=(1./2.54)*RESIC READ(5,31) LAT, RESIC しょ 24 (10) 一 | 下 子 子 の ツ 子 子 。 た ナ ト LAT=(LAT*PI)/180. OMX +OM+COS(LAT) WRITE(6,9) RUN PHI (1+2)#CMX#1 NOISE PARAMETERS PHI(5,5) IS THE PRINTOUT COLUMNS PI=3, 141593 2 J=1,5 PHI (1,1)=1. PHI (2,21=10 PHI (1, 1)=0. 1=1,5 CONTINUE Was 24PE TX2=0. 8 .. 1 31 ပ ပ ပ ``` ``` PHI(4,5)=--292438#FXP(-B#T)+1,97463#EXP(-E#W*T)#SINIC+,148644 PHI (5,3)=.0115450#FXP(-B#T)-.0779554#EXP(-F#W#1)#SIN(C+.148644 PHI(4,3)21-11545046XP(1841)-112404046XP(164241)+SIN(C-110458) PHI (5,5)*,0292438*EXP(-84T)+1,24070*EXP(-6*W*T)*SIN1C-4,04014) PHI(3,4) =1 - 83744 #EXP(-8 #T) +2 - 14907 #EXP(-6 # W #T) #S/N(C-1 - 02 5 5 4) RANDOM VARIABLE WITH MEAN=0, VARIANCE-1 PHI(4,4) = - 183744 = EXP(-18 = 1) + 1 = 35030 = EXP(-E = 1 + 5 IN(C+1 + 0689) PHI (2,5) = 2,924384EXP(-8#T)+3,14273#EXP(-E#W#T) + SIN(C-1,9458) PHI (5,4) n. 01037454EXP (-841)-.8484204EXP (-64841) #SIN(C+.0517) INITIAL CORRELATION STRUCTURE BETWEEN X(3), X(4), AND X(F) EQUATION FORMAT U IS THE NORMALLY DISTRIBUTED ZERO MEAN UNITY VARIANCE XT(4)=PHI(4,3)*X(3)+PHI(4,4)*X(4)+PHI(4,5)*X(5) XT(3) #PHI(3,3) #X(3)+PHI(3,4) #X(4)+PHI(3,5) #X(5) XIIC IS THE INITIAL CONDITION ON X(1) AT T=0 ACUMT.0. X4IC IS THE INITIAL CONDITION ON X(4) AT DIFFERENCE Z X(E)==1614X(B)+*4384X(S) XT(1) *X111C+ACUMT+DMX+X(5) ACUMT IS TOTAL ELAPSED TIME STATES PROCESS-X(I) IS READ IN AS 1S X(N+1) AND X 1S X(N) READ(5,32)(X(1), [#1,5) IF(K.GT.1001) GO TO FORMAT (* *, 5F10.4) CALCULATION OF THE X(3)=2.97*X(3) FORCING FUNCTION X(2)=X(2)#60. X(4)=• @0+X(4) ACUM1 = ACUM1+1 READ(11) U XT(2) = X(2) X11C=X(1) X41C=X(4) G0 T0 70 60 10 X+2=Z 70 42 7 ပ U ں ر: ပ ပ ``` ``` STATE AND THE KALMAN VEL IS THE INTEGRATED ACCELERATION DUE TO THE ACCELERATION THAT THE VEL = -G*ACUMT#X(1)*PI/(60**180*)+G*DMX*ACUMT**2#X(2)#PI/(2**60*# DELT IS THE TIME INTERVAL BETWEEN THE PRESENT MEASUREMENT AND THE CHECK TO INSUPE POSITIVE QUANTITIES ALONG THE COVARIANCE MATRIX XT(5) #PHI(5,2) #X(3) +PHI(5,4) #X(4) +PHI(5,5) #X(5)+D(5) #U(K) HRITE (6, 52) ACUMT, DELT, (X(I), I=1,5), U(K), (EPR2(I), I=1,5), EPR2(1) # THE SOUARE OF THE ERROR BETWEEN THE ACTUAL CALL DVKAL (OMX, G, YV, INDI, DELT, XHV, PV, RESV) CALL DVKAL(OMX, G, YV, IND), DELT, XHV, PV, RFSV) (XHV(1),1=1,51,(PV(1,1),1=1,5),VEL,YV TRE TIME AT THE PPEVICUS MEASUREMENT ACCEL FROMETER ACTUALLY SEES 40 EEEE2(1)=(X(1)=XHX(1))##2 IF(VEL.LT.DVU) GO TO 47 TF(VEL.GT.DVL) GO TO 46 1 180.)+X(4)-X4IC+RESIC ESTIMATE OF THAT STATE IF(PV(I,1)161,62,62 PREVIOUS MEASUREMENT DEL T#ACUMT-TP CEL T=ACUMT-TR DELV MEASUREMENT DVU=DVU+DELV DVL=DVL+DELV DVU=DVU-DELV DVL *DVL-DELV 00 19 1=1,5 00 49 1=1.5 X(1)=XT(1) YV=-DELV 19 CONTINUE CONTINUE BONITHUE 28 YV*DELV DIACONAL 14 ب ပ ပ L U ``` ``` *X(5)*,6X,*U*,8X,*X1 ERR2*,3X,*X2 ERR2*,3X,*X3 ERR2*,3X,*X4 ERR2 WRITE(6,54) ACUMT,(X(I),I=1,5),U(L),(ERR2(I),I=1,5),(XHT(I),I=1,5),(PT(I,1),I=1,5),VEL,YT 3',3X,'X5 ERR2'/' ', TRUE',4X,11F10,3/' ','ESTIMATE',5F10,3,10X,4 5F10,3/' ','INTEGRATED ACC DUTPUT# ',F8,3,'; MEASUREMENT# ', *3X, *X5 ERR2'/' ', TRUE', 4X, 11F10.3/' ', 'ESTIMATE', 5F10.3, 10X F6.3, SEC./ ',13X, X(1)',6X, X(2)',6X, X(3)',6X, X(4)',6X, DELTA TIME 1SEC */* *,13X, *X(1)*,6X, *X(2)*,6X, *X(3)*,6X, *X(4)*,6X, 2 *X(5)*,6X,*U*,8X,*X1 ERR2*,3X,*X2 ERR2*,3X,*X3 ERR2*,3X,*X4 WRITE(7,80) RUN, ACUMT, ERR2(1), PT(1,1), ERR2(2), PT(2,2) TIME# +F8.3. SEC 54 FORMAT (*O*/*O*, TIME INTERVAL- TIME + F8.3, * SEC WRITE(7,76) RUN, ACUMT, X (1), XHV (1), X (2), XHV (2) WPITE(7,77) RUN, ACUMT, X(1), XHT(1), X(2), XHT(2) CALL TIKAL(ACUMT, DMX, G, YT, IND2, XHT, PT, REST) FORMAT (*0 * / *0 * , * DELTA YELOCITY- FORMAT(11,F10.3,4F10.4,25X, ...) FORMAT(11, F10.3, 4F10.4, 25X, 18.) RESIDUAL # . F10.4 RESIDUAL # ',F10.4) ERR2(1) = (X(1)-XHT(1)) = 42 IF (ACUMT. 1.T. TT) GO TO 81 FORMAT(11,F10.3,4F10.4) IF
(ACUMT.LT.S)GD TO 72 TIME INTERVAL MEASUREMENT IF (PT(1,1))61,63,63 YT=DVL+DELV 00 53 1=1,5 TT=TT+10. CONTINUE TR = ACUMT X=X+XCN 80 ပ ``` N=1 S=S+1. IF(S.LE.R) GO TO 41 61 RETURN END B. DVKAL Subroutine A STANTAN AND THE STANTAN AND ``` SFSTAR FROTES N-1; P DENOTES PRIMED; H DENOTES HAT OR ESTIMATE; REAL H(5,5),N(5),PHI(5,5),M(5),P(5,5),PS(5,5),PR(5,5), LINEAR CONNECTION MATRIX TO STATES AT PRESENT MEASUREMENT FIRST MEASUREMENT IS IGNORED BY SETTING YV .. O DVKA! (DMX, 2, YV, IND1, T, XH, P, RES) INITIAL ESTIMATES ON THE COVARIANCE MATRIX 1 XHP(5), XH(5), G(5), XHR(5), PP(5,5) VARIANCE OF THE MEASUREHENT NOISE KALMAN ESTIMATOR PR(5,5) = 2184707 NAUN'NON'NON' PR(3,4)=PR(4,3) PR(3,51=--47741 PA(5,3) *PR(3,5) PR(5,4)=PR(4,5) PR(4,4)=.47741 PR(3,31=8.808 7F(IND1)1,1,2 PR (2, 2) = 3600. PI=3,141593 R DENOTES N-1 SUBROUT INE PR (4,3)=0. DELTA VELOCITY V=. 0394*#2 PR(1,1)=1. PR (4,5) #0. 00 4 Jal, 5 00 5 1-1,5 CO 3 1-1,5 PR(1, J) =0. XHR (1) #0. GO TO 25 CONTINUE MEA SUREMENT G(1120. M(11.0. N(1)=0. 1 ND3 = 0 ¥V=0. JHE. ں ں O ပ ပ O ပ ``` THE PROPERTY OF THE PARTY TH ``` PR(1,J) IS THE COVARIANCE MATRIX AT THE PREVIOUS MEASUREMENT Pp(1, J) ** PHI(1, 1) ** PR(1, 5) * PHI(1, 2) ** PR(2, J) ** PHI(1, 3) ** PR(3, 4) PS(1, J) HPP(1,1) *PHI(J,1) +PP(1,2) *PHI(J,2) +PP(1,3) *PHI(J,3) PREVIOUS MEASUREMENT XHP(1)=PHI(1,1)=XHR(1)+PHI(1,2)=XHR(2)+PHI(1,3)=XHR(3) MOPN=(M(1)*PD(1,4)+M(2)*DD(2,4)+M(4)*PD(4,4))*N(4) 42 MPM# (M(1)#PS:1.11+M(2)#PS(2.1)+M(4)#PS(4.11)#M(1 +(M(1)*pS(1,2)+M(2)*pS(2,2)+M(4)*pS(4,2))*M(2) +(M(1)*pS(1,4)+M(2)*pS(2,4)+M(4)*pS(4,4)+M(4) S + 1) H+ + PHI(I+4)*PR(4,J)+PHI(I,5)*PR(5,J) +PP(1+4)+PN1(0+4++PP(1+9)+PN1(0+9) +PHI(I,4)*XHR(4)+PHI(I,5)*XHR(5) LINEAR CONNECTION MATRIX TO STATES AT M(21=2#OMX#T##2#PI/(2.#180.#60.) INSURE SYMMETRICAL COVARIANCE MATRIX M(1) = - 2 = T#P1/(180 = +60 =) 25 CALL HPHI (T.PHI, H, IND3) PRIORY COVARIANCE MATRIX A PRIORI STATE ESTIMATE NDN # (+ ' +) # DA (+) N # N A N OF HEDRANDN+2. #MODN+V IF(IND1)41,41,42 PS(1,11*PS(1,1) CALCULATION OF Q DO 12 1-1,5 00 13 1=1,5 00 14 J=1,5 00 15 1=1,5 00 16 3#1,5 M(4) =-1. CONTINUE 14 CONTINUE 13 CONTINUE CONTINUE M(4)=1. CONTINUE CONTINUE 60 TO 44 0.0 12 2 6] 4 U ပ ပ ပ ပ O ``` ``` G(I)=(PS(I,1)+M(1)+PS(I,2)*M(2)+PS(I,4)*M(4)-PP(I,4))/Q CONTINUE CALCULATION OF GAIN VECTOR U ``` ÖVENAAARENDERRIKKVALUURUR ALEEN ALEEN BERKERRIKKERRIKKERRIKKERRIKKER ALEEN BERKERRIKKERRIKKERRIKKERRIKKERRIKKER DO 10 1=1,5 DO 11 J=1,5 POSTERIORI COVARIANCE MATRIX P(1,J)#PS(1,J)-Q#G(1)#G(J) CONTINUE ပ REST RESIDUAL BETWEEN MEASUREMENT AND KALMAN "MEASUREMENT" RESTV-M(1)+XHP(1)-M(2)+XHP(2)-M(4)+XHP(4)-N(4)+XHR(4) ပ POSTERIORI STATE ESTIMATE XH(1) # XHP(1) +G(1) #RES 50 17 1-1,5 ပ CONTINUE 00 18 1m1,5 XHR (1) *XH(1) 00 19 1=1,5 18 PR(I, J) = P(I, J) DO 20 J=1,5 I + I ON I = I ON I CONTINUE 20 RETURN 62 C. TEXAL Subroutine AND THE PROPERTY OF PROPER Kandaki alah dan berhisian verkasian padan menasawa tamba ter TO THE PROPERTY OF PROPERT ``` REAL M(5), PHI(5,5), H(5,5), XHP(5), XH(5), P(5,5), PS(5,5), XNHP(5), SUBROUTINE TIKAL(ACUMT, OMX, Z, Y, IND2, XH, P, RES) P DENOTES PRIMED; H=HAT OR ESTIMATE; S=STAR CALL HPHI(T, PHI, H, IND3) LINEAR MEASUREMENT CONNECTION TO STATES M(2) # 2#DMX#ACUMT##2#P1/(2.#180.#60.) TIME INTERVAL BETWEEN REGISTER SAMPLES COVARIANCE OF MEASUREMENT NOISE V=1/2-54*42 TIME INCREMENT KALMAN ESTIMATOR 5 M(1) =- Z + ACUMT + PI / (180 + 60 -) INITIAL COVARIANCE ESTIMATES 1 pp(5,5),6(5),pNS(5,5) PS(5,5) = 2184707 PS(3,4) =PS(4,3) PS(5,4) mPS(4,5) DO 3 1=1,5 PS(3,5)=-.47741 PS(5,3) #PS(3,5) PS(4,4)=,47741 IF (IND2)4,4,5 PS(3,3)=8.808 PS(2,2)=3600. P1=3.141593 PS (4,3) =0. PS (4, 5) = 0. PS(1,3) ≈0. PS(1,11=1, XHP([]=0. 0011=1,5 0023-1,5 CONTINUE M(3)=0. M(4)=1. INDSmo T=1. ပ ပ ပ ``` Strikkinder de de sterne de steine d ``` STATE IN COMPUTING THE ESTIMATE VA/ (+) W + (+ 1) % d + PNS(1,1) upp(1,1) that (1,1) the (1,2) the HI (1,2) the (1,1) alter (1,3) the PP(I, 1) #PHI(I, 1) #P(I, 4) +PHI(I, 2) #P(2, 4) +PHI(I, 3) #P(3, 4) + RES = RESIDUAL BETWEEN MEASUREMENT AND KALMAN "MEASUREMENT" XNHP(1)=PHI(1,1)*XH(1)+PHI(1,2)*XH(2)+PHI(1,3)*XH(3) +M(4) # DS(4.1)) 17.1)X+(5.7)IHd*(5.1)dd+(5.7)IHd*(5.1)dd RES=Y-M(1)*XHP(1)-M(2)*XHP(2)-M(4)*XHP(4) A=A+M(1)*(M(1)*PS(1,1)+M(2)*PS(2,1) +PHI(I,4)*XH(4)+PHI(I,5)*XH(5) DHI(I.4) #P(4, 1) +PHI(1, 51 #P(5, 1) INSURE SYMMETRICAL COVARIANCE MATRIX G(!) IS THE GAIN WEIGHTED TO EACH G(1) = (PS(1,1) *M(1) +PS(1,2) *M(2) DO 9 J=1,5 A POSTERIORI COVARIANCE MATRIX (T) D(I) 1) = DS(I) 1) - VAG(I) + C(C) A POSTERIORI STATE ESTIMATE A PRICRI COVARIANCE MATRIX XH(1)#XHP(1)+G(1)*RES A PPIORI STATE ESTIMATE ONS (7.1) HDNS (1.7) SNd DO 10 I=1,5 DO 11 1=1,5 DO 12 J=1,5 00 13 1=1,5 00 14 3=1,5 00 6 1=1,5 DO 8 1#1,5 CONTINUE CONTINUE 10 CONTINUE CONTINUE 12 CONTINUE 11 CONTINUE 14 CONTINUE A V = A + V ပ ပ ပ ں ``` 13 CONTINUE DO 15 I#1.5 XHP(I)#XNHP(I) DO 16 J#1.5 16 PS(I.J)#PNS(I.J) IS CONTINUE INDZ#INDZ+1 RETURN END nostatoros postapiones en estatos processos de la constanción dela constanción de la constanción de la constanción de la constanción de la handlest the second of sec D. HPHI Subroutine resident in the manuscript of the season of the second section second section of the section of the second Ų ``` HO(5,51,HT(5,5),A(5),K(45), A(5) = ATAN2(-2*E#(1.-E##2)##.5,2.*E##2 -1.1.1+A(3) SUBRDUTINE HPHI(TI,PHI,H,1N03) CALCULATION OF COVARIANCE AND PHI MATRICES REAL H(5,5),PHI(5,5), A(3)=-ATAN2(W#(1.-E##2)##.5.8-E#W) A(4) = ATAN2((1. - E##2) ##. 5, -E)+A(3) OM=(15.#P1)/(60.#60.#180.) ストルーニート。ノーイ・本田本は本の中の中半の一 C=8445-2+464748+2445 X(5) H-1./ (2.4C4D442) K(1)=-1./(2.+8*C**2) X(2)=1./(D#C#C##.5) X:3)=X(2) LAT=(LAT*P1)/180. DHN+(1.-F##2)++.5 X(6) #1./(5.#C##2) DHX=DM*CDS(LAT) 1F(IND3)40,40,4 PP (5,5), LAT PHI (1 +1)=1. 24.1-1 7 00 PI=3.141593 PHI (1,1) =0. PHI (2,2)=1. 00 1 1=1,5 00 2 3-1,5 H(1,3)=0. CONTINUE K(1)=0. $162-9. LAT=40. N=. 2*PI 40 T=0.0 E . . 5 8=.1 ~ ~ ``` The Local Property for the december of the control ``` IT(1,0)=2.45102484744441X(1,46XP(-2.4841)+(X(1+1)46XP(-841-64XV)+ ((-8-E#W)+SIN(O#T+A(I))-O#COS(O#T+A(I)))>K(L+2)#EXP(-B#T-E#W#T)# ((-8-E42)4818(D41+4(7))-D4CO8(D41+4(7))-1/(8442 +5-464248+248) +X(L+3)4EXP(-2.4E&X&L)+X(L+4)4(-2.4E&X&COS(2.4D&T+A(1)+A(J))+ 5. 2. #D#SIN(2. #D#T+A(J)+A(I))}#EXP(-2. #E#W#T)/(4. #W##2) X(11) = -8/(2。4C442) X(12) = 8442/(04C462) X(12) = 8442/(04C463) X(13) = 1/3 / (C4(C4(1°-F442)) 4 × 5) X(14) = -COS(A(3) - A(5)) / (4。そほどC42 / (1。-F42)) X(21) = -8/(2。4C42) X(22) = -8/(2。4C42) X(22) = -8/(2。4C42) X(24) = -1/3 / (C4(C4(1°-F442)) X(24) = -1/3 / (C4(C4(1°-F42)) X(25) = -1/3 / (C4(C4(1°-F42)) X(27) = 8442/(C4(C4(1°-F42)) X(27) = 8442/(C4(C4(1°-F42)) X(27) = 8442/(C4(C4(1°-F42)) X(29)=-COS(A(4)-A(5)1/(4°#E+C+(1°-E+2)) X(30)=-%/(2°#C#(1°-E+2)) X(41)=-B#+3/(2°#C+2) X(42)=(W+B+#2)/(C#(C+(1°-E++2)*+°5) K・9)m-COS(A(3)-A(4))/40*40*42*C+E) K(10) m-10/(20*2をCを(10-Eをを2)) 大(45) ヨーンキを2/(2・そのを(1,1のチャ2) K(44)=-N/(4. +E+C+(1.-E++2)) DO 6 J#3.5 H MATRIX AT TIME T K(43)=K(42) 18 00 21 1=3,5 00 5 1=3,5 5 CONTINUE 6 L=L+5 1=1 [59 4 ``` ပ ``` PHI(4,5)=-,292438#EXP(-0#T)+1,97463#EXP(-6###T)#SIN(C+,148644 PHI (5°3) = 01154204EXP(-B41)-007795544EXP(-E4M41)4SIN(C+0148644 PH1(3,4)=1.83744#EXP(-84T)+2.14907#EXP(-E4W4T)#SIN(C-1.02554) PHI(4,3)=--115450#EXP(-8#1)--124070#EXP(-E#W#1)#SIN(C-1,9458) PHI (5,5)=.0292438FEXP(-B#T)+1.24070FEXP(-E#W#T)#S1N(C-4.04014) PHI (4,4)===183744#EXP(-B#1)+1,35030#EXP(-E#W#1)#SIN(C+1,0689) PHI (3,5)=2.92438#EXP(-8#T)+3.14273#EXP(-0+W#T)#SIN(C-1.9458) PHI (5,4) = 0183745#FXP(-8#1) - 848420#EXP(-E#W#1)#SIN(C+0217) PHI(3,3)=1.1545#EXP(-8#T)+.1975#EXP(-E#W#T)#SIN(C-.8986) (O)H 1 STATE TRANSTION MATRIX IN CLOSED FORM Ħ I H MATRIX IN CLOSED FORM I.E. 24 H(1,0) HHT(1,0)-HO(1,0) CEV4(10:FE442)44.54F HO(1, 1) HH (1, 1) OH PHI (1,2)=0MX+T MATRIX AT TIME H(4,3)=H(3,4) H(5+3)=H(3,5) H(5,4)=H(4,5) 1 = 3,5 00 24 3*3,5 IND3=IND3+1 CONTINUE CONTINUE 60 TO 4 23 00 61 23 21 3 I ں ပ ပ ``` J*3,5 For the second formal for the second section of the ## X. APPENDIX B: GRAPHICAL RESULTS A. Azimuth Error 的,我们是是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人, Figure 16. Run 1 - azimuth error Figure 20. Run 5 - azimuth error Marie Contract Contra MARCHAR STREET STATE OF THE STREET STATES AND THE STREET STATES AND THE STREET STATES AND THE STREET STATES AND THE Contractor & and a cont TO SECTION OF THE PROPERTY Figure 24. Run 9 - azimuth error B. Level Tilt $H_{\rm C}$ and are a support on $H_{\rm C}$ and $H_{\rm C}$ and $H_{\rm C}$ are a support of $H_$ Biblio valent Figure 29. Run 4 - level tilt kandukana kandukan ilinga mengan pengangan pengangan pengangangan pengangan pengangan pengangan pengangan penga Figure 35. Run 10 - level tilt Kheeshilin eest oose streetselvis ilkii 105 Kiraal vatariisaan oo work - enot i